Annex 1. Systematic review results

Searches included studies published before the 26/04/2022

Q 1: Respiratory activities-specific exhaled particle emission

Search strings

(droplet* OR particle* OR *aerosol*) AND (size diameter OR volume* OR CM OR centimetre OR centimeter) AND ("expiratory activity" OR "Respiratory Activity" OR "Respiratory Activities" OR breath* OR speak* OR talk* OR shout* OR sing* OR cough* OR sneez*)

Eligibility criteria for study selection

Experimental studies that measured the 1) article number size distribution (µm) per second (number of particles per second/particles size); 2) total particle mass concentration with an aerodynamic diameter within a given size ranges (number of particles cm-3) 3) Total particle volume concentration per unit diameter (in mL m-3 µm -1)

Main outcome measures

- 1. Particles size distribution
- 2. volumetric particle emission concentration
- 3. Mass

Results

Experts independently screened the titles and abstracts and excluded studies that did not match the inclusion criteria. Discrepancies were resolved in discussion with the other experts. The same experts retrieved full text articles and determined whether to include or exclude studies on the basis of predetermined selection criteria. A total of 1125 studies were initially screened, of which 1088 were considered irrelevant. After exclusions, 26 studies were eligible for full text review and 15 met the inclusion criteria.

Deference	Ctudu docian			Respiratory activity	
Reference	Study design	Range size	Breathing	Talking	Singing
Alsyed at al 1	Exporimontal study	0.5 10 um	Modian mas: 125 particlo/s (85 601)	Talking: Median mas: 270 (120-1380)	Singing: Median mas: 980 (390-2870)
Aisveu et al.	Experimental study	0.5 – 10 μπ	Median mas. 155 particle/s (65-091)	Loud talking: Median mas 570 (180-1760)	Loud singing: Median mas 1480 (500-2820)
Bagheri et al. ²	Experimental study				
Chao at al. 3	Exporimontal study	maan diamatar 16 0 um		Total number 112–6720	
Chao et al.	Experimental study	inean diameter 10.0 µm		Concentration 0.004–0.223cm ⁻³	
Ding et al. ⁴	Experimental study	0.3–10 μm		315 particles/s	413 particles/s
Good at al. 5	Experimental study	0.25 _ 22.um	239 particles/s (<56 - 909)		411 particles/s (<56 -1194)
0000 et al.	Experimental study	0.25 - 55 μΠ	1915 particles/L ⁻¹ (<450 - 7269)		3289 particles/L ⁻¹ (<450 - 9551)
Kappelt et al. ⁶	Experimental study	< 10 µm	6210 ± 5630 min ⁻¹	14,600 ± 16,800 min ⁻¹	
Murbo et al. ⁷	Experimental study	0.2_10.um	5 particles/sec (0 – 28)	66 particles/sec (14 – 391)	1537 particles/sec (753 – 6093)
Wurbe et al.		0.5-10 μπ	>99 %	6 of all detected particles were ≤5 μm (>80% of all	particles ≤1 μm)
Murbe et al. ⁸	Experimental study	>0.3 μm—25.0 μm		16 – 267 particles/s	141 – 1240 particles/s
Mimura et al. 9	Experimental study	PM 2.5	23.1 ± 9.9 μg/m3	32.3 ± 14.7 μg/m3	
Willia et al.		PM 10	40.4 ± 17.8 μg/m3	40.4 ± 17.8 μg/m3	
J. Duguid ¹⁰	Experimental study	> 20 µm	0 particle	0 – 650 particles	
Daninani at al. ¹¹	Exporimontal study	< 1 µm	12.5 (83.2) particles L ⁻¹		
rapineni et al.		> 1 µm	1.9 (13.4) particles L ⁻¹		
Morawska et al. 12	Experimental study	0.5-20 μm	98 particles L ⁻¹	672 particles L ⁻¹	1088 particles L ⁻¹
Asadi et al. 13	Experimental study	<5 μm	1 – 50 particles/s		

Stadnytskyi et al. 14	Experimental study	0.5 – 5 μm		2600 particles/s			
		Mode	C _{n,i} (cm ⁻³)	μ _{Di} (μm)	GM (μm)	σ _{Di} (μm)	GSD (μm)
Morawska et al. 12		B (bronchial)	0.06	0.99	2.69	0.26	1.30
Johnson et al. ¹⁵		L (larynx)	0.2	1.39	4.01	0.51	1.67
		O (oral)	0.001	4.98	145.5	0.59	1.80

BLO model details ^{12,15}									
	Breathing	Talking	Singing						
Total volumetric particle emission concentration (ml m ⁻³)	8.4 E -7	2.2 E -5	1.1 E -4						
Total particle emission concentration (particles L-1)	60	260	1060						
Size range (long range) (μm)		0.1 - 30							
Size range (Short-range) (µm)		0.1 - 100							

Q 2: Viral load

Search strings

("viral load"~3 OR "viral loads"~3 OR "viral loads"~3 OR "virus loads"~3 OR "virus burden"~3 OR "virus titre" OR "viral titre"~3 OR "virus titres" OR "viral tites vores" OR "

Eligibility criteria for study selection

Studies that measured the distribution of Viral Load through NP across multiple patients (>15.000), systematic reviews, or meta-analysis

Main outcome measures

- 1. Viral load distribution
- 2. Range of log₁₀ RNA copies per mL

Results

Experts independently screened the titles and abstracts and excluded studies that did not match the inclusion criteria. Discrepancies were resolved in discussion with the other experts. The same experts retrieved full text articles and determined whether to include or exclude studies on the basis of predetermined selection criteria. A total of 201 studies were initially screened, of which 187 were considered irrelevant. After exclusions, 14 studies were eligible for full text review and 3 met the inclusion criteria.

Poforonco	Study design	Viral load								
Kelefenee	Study design	Min copies/mL	Max copies/mL	Median copies/mL	Mean (SD) log10 RNA copies per ml					
Gilad et al. ¹⁶	Systematic review	1.2 x10 ³		8.14 x10 ⁶						
					8.63 (95% CI: 8.04–9.26) and 6.01					
Character 17	Customatic noview				(95% CI: 4.65–7.78) log ₁₀ copies/ml for					
Cheff et al.	Systematic review				severe and non severe disease,					
					respectively					
lacot et al ¹⁸	Retrospective case				6.6 log ₁₀ copies/ml					
Jacol et al.	serie									
Chen et al ¹⁹	Systematic review and			8 91 (95% CI: 8 83-9 00) log	2.04 log.					
chen et al.	meta-analysis			0.51 (55% Ci. 0.85-5.00) 10g10	2.04 10810					

Q 3: Biological decay in air

Search strings

(air OR particl* OR *aerosol*) AND ("biological decay" OR inactivat* OR decay OR stability)

Eligibility criteria for study selection

Studies that measured the SARS-CoV-2 biological decay in aerosol.

Main outcome measures

1. Range of estimated biological decay constant k (min-1 or h-1)

Results

Experts independently screened the titles and abstracts and excluded studies that did not match the inclusion criteria. Discrepancies were resolved in discussion with the other experts. The same experts retrieved full text articles and determined whether to include or exclude studies on the basis of predetermined selection criteria. A total of 941 studies were initially screened, of which 632 were considered irrelevant. After exclusions, 72 studies were eligible for full text review and 7 met the inclusion criteria.

- /					Conditions	5				Decay		
Reference	Study design	Temp. (°C)	HR (%)	Time (m)	Light	Measure	Lineage	Start concentration	End concentration	Kinfectivity	Minutes for 50% decay	Decay Rate
Van Doremalen et al. ²⁰	Experimental	23	65	180	NR	TCID ₅₀	NR	10 ^{3.5}	10 ^{2.7}	1.1 h ⁻¹		
Pohov et al ²¹	Modeling	22	40	240	NR	TCID ₅₀	NR			0.108 h ⁻¹		
Robey et al.	Modeling	22	65	240	NR	TCID ₅₀	NR			0.288 h ⁻¹		
Schuit et al. ²² Experimental		20.1 ± 0.3	70	60	No light	K _{Infectivity} min ⁻¹				0.008 ± 0.011 min ⁻¹		0.8 ± 1.1 %/min
	Experimental	20.1 ± 0.3	70	60	Simulated sunlight mild intensity	Decay Rate,	hCoV-19/USA/WA-1/2020 nin			0.121 ± 0.017 min ⁻¹		11.4 ± 1.5 %/min
		20.1 ± 0.3	70	60	Simulated sunlight high intensity	%/min				0.306 ± 0.097 min ⁻¹		26.1 ± 7.1 %/min
		40	20	60			hCoV-19/USA/WA-1/2020			0.216 ± 0.056 min-1		
		40	20	60	Simulated sunlight		hCoV- 19/USA/CA_CDC_5574/2020			0.209 ± 0.063 min ⁻¹		
Schuit et al. ²³	Experimental	40	20	60			hCoV-19/USA/NY- PV08449/2020			0.299 ± 0.047 min ⁻¹		
		40	20	60			hCoV- 19/France/IDF0372/2020			0.312 ± 0.051 min ⁻¹		
		20	20	60	Darkness					0.000 ± 0.011 min ⁻¹		
		40	20	60	Darkness		All above lineages			0.012 ± 0.008 min ⁻¹		
Oswin et al. 24	Experimental	18-21	40-70	5	Simulated sunlight	Decay rate	REMRQ0001				10	
Chatterjee et al. 25	Modeling	21	65	180	NR	TCID ₅₀	NR	10 ^{3.5}	10 ^{2.7}	1.1 h ⁻¹		

Creative at al. 26		19-22	40-60	300	Darkness	TCID ₅₀	SARS-CoV-2 England-2	10 ⁶	0.75 h ⁻¹	0.91 – 2.27 % min-1
Smither et al.	Experimental	19-22	68-88	300	Darkness	TCID ₅₀	SARS-CoV-2 England-2		0.80 h ⁻¹	0.40 – 1.59 % min-1
									Max values:	
									0.066 ± 0.028 min ⁻¹	Max values:
									(Darkness)	6.3 ± 2.6 % min ⁻¹
Dabisch et al. ²⁷	Experimental / Regression	10 - 30	20 – 70	20 - 60	Simulated sunlight and darkness	TCID ₅₀	SARS-CoV-2 (Passage 4; BetaCoV/USA/WA1/2020)		0.488 ± 0.146 min ^{−1} (Sunlight)	(Darkness) 38.1 ± 8.9 % min ⁻¹ (Sunlight)
									Empirical regression	
									in Eq 1.	

Q 4: Host immune response

Range of vaccine effectiveness against SARS-CoV-2 infection stratified by vaccine formulation, time, age and VoC

A search of the grey, preprint, and published literature for COVID-19 Vaccine Effectiveness and Impact studies is conducted daily.

Details here https://view-hub.org/covid-19/effectiveness-studies?target=variant&field_covid_studies_variant_tabl=9872

The model uses data published on the: "Results of COVID-19 Vaccine Effectiveness Studies: An Ongoing Systematic Review", Weekly Summary Tables, Updated 8th September 2022. <u>https://view-hub.org/sites/default/files/2022-09/COVID19 Vaccine Effectiveness Transmission Studies Summary Tables 20220908.pdf</u>

Q 5: Particle to PFU ratio (PFU> TCID50%)

Search strings

("viral load"~3 OR "viral loads"~3 OR "virus loads"~3 OR "virus burden"~3 OR "virus burden"~3 OR "virus titre" OR "virus titre" OR "virus titre" OR "virus titre" OR "virus titres" OR "virus ti

Eligibility criteria for study selection

Studies relating SARS-CoV-2 Viral Loads and viable virus in exhaled breath (EB) and air expressed as CPE (PFU), TCID50% or multiplicity of infection (moi). VoCs VS wild virus

Main outcome measures

1. Range of ratio of viral copies in aerosol to plaque forming units (PFU) ratio for SARS-CoV-2 (log10) OR TCID50% or moi

Results

Experts independently screened the titles and abstracts and excluded studies that did not match the inclusion criteria. Discrepancies were resolved in discussion with the other experts. The same experts retrieved full text articles and determined whether to include or exclude studies on the basis of predetermined selection criteria. A total of 259 studies were initially screened, of which 195 were considered irrelevant. After exclusions, 61 studies were eligible for full text review and 5 met the inclusion criteria.

Data synthesis

Full vaccination (defined as >2weeks after reception of 2nd dose during primary vaccination series)

FFA: focus forming assay

						Conditio	ons				Viable-to-RNA	virus ratio	
Reference	Study design	Cohort	Sampling method	DPOS	Clinical manifestation	Vaccination status	Lineage	qRT-PCR	CT threshold for culturability assay	culturability assay	Successful viral cell culture	Viral titre	RNA to PFU
						NA	Wild	0.4744 log ₁₀	<27	FFA	91.9%		
						No	Delta	0.44 log ₁₀			91.7%	0.343 log ₁₀	
Puhach et al. ²⁸	Experimental	565	NPS	5	Mild	Fully	Delta				83.8%		
						No	Omicron				95%		
						Fully	Omicron				85.7%		
Heitzman-Breen et al. ²⁹	Modeling from animal studies	NA	NA	NA	NA	NA	Wild						10 ³ :1 to 10 ⁶ :1
Hawks et al. ³⁰	Animal study	NA	EB	2	NA	NA	USA- WA1/2020	1.4-log ₁₀ PFU/hour		Vero cell plaque assay			10 ² :1
Basile et al.	Experimental	195	URT/LRT	4.5	Mix				<32		24% (CPE)		
								94 Viral genome				74 virus/L	2.68E+04
								equ/L air				air	TCID ₅₀ /100 μm
								30 Viral genome				18 virus/L	6.31E+03
Lednicky et al. ³¹	Experimental	2	Air samnle	2 -4	NΔ	No	Wild	equ/L air	ΝΔ	TCIDrotests		air	TCID ₅₀ /100 μm
Learnery et al.	Experimental	-	7 in Sumple	2 7		NO	vviid	44 Viral genome				27 virus/L	1.00E+04
								equ/L air				air	TCID ₅₀ /100 μm
								16 Viral genome				6 virus/Lair	2.15E+03
								equ/L air				0 TH 03/ E 011	TCID ₅₀ /100 μm

Q 6: VoC increased transmissibility

Increased transmissibility and global spread of SARSCoV- 2 variants of concern as at June 2021³²

Analysis

1,722,652 SARS-CoV-2 sequences uploaded to the Global Initiative On Sharing All Influenza Data (GISAID) hCoV-19 database, considering only VOC or VOI reported at least 25 times in at least three countries (see Supplementary Tables S1 and S2 for sequence numbers per variant per country). GISAID sequences used for this work are acknowledged in Supplement 2. Multinomial logistic model of competitive growth was used to estimate the effective reproduction number of each variant relative to that of the non-VOC/VOI viral population for each reporting country. It is assumed that the generation time of VOC/VOI remained unchanged compared with previously circulating variants.

Results

Despite differences between countries, our analysis showed a statistically significant increase in the pooled mean effective reproduction number relative to non-VOC/VOI of B.1.1.7 at 29% (95% confidence interval (CI): 24–33), B.1.351 at 25% (95% CI: 20–30), P.1 at 38% (95% CI: 29–48) and B.1.617.2 at 97% (95% CI: 76–117) (Figure 1). Of the six variants currently designated as VOI, five were considered in our analysis and among these, only B.1.617.1 and B.1.525 demonstrated a statistically significant increase in the effective reproduction number of 48% (95% CI: 28–69) and 29% (95% CI: 23–35), respectively. In line with these estimates, our results showed rapid replacement of previously circulating variants by VOC/VOI in nearly all countries; of the 64 countries considered in this analysis, we estimate VOC/VOI to be the most frequently circulating lineage on the last day of available data in 52 countries, the most common variants being B.1.1.7 (40 countries) and B.1.617.2 (India, Singapore, United Kingdom and Australia).

Given the widespread co-circulation of VOC/VOI, we also compared the effective reproduction numbers of these variants against each in order to estimate the nature of future competitive growth between them (Figure 3, excluding P.2 and B.1.427/B.1.429). Notably, the pooled mean difference in the effective production number between the VOC B.1.1.7 and B.1.351 was small at 4% (95% CI: 0–8), while P.1 demonstrated an increase relative to B.1.1.7 and B.1.351 of 10% (95% CI: 3–17) and 17% (95% CI: 6–30). Given these estimates, the longer-term trends of competitive growth between these three VOC remain unclear. In contrast, the rapid observed growth of B.1.617.2 suggests a clear competitive advantage compared with B.1.1.7, B.1.351 and P.1, with estimated increases in the effective reproduction number of 55% (95% CI: 43–68), 60% (95% CI: 48–73) and 34% (95% CI: 26–43) respectively.

A systematic review results show that the effective reproduction number and basic reproduction number of the Omicron variant elicited 3.8- and 2.5-times higher transmissibility than the Delta variant, respectively. The Omicron variant has an average basic reproduction number of 9.5 and a range from 5.5 to 24 (median 10 and interquartile range, IQR: 7.25, 11.88). The average effective reproduction number for Omicron is 3.4 with a range from 0.88 to 9.4 (median 2.8 and IQR: 2.03, 3.85)³³.

Q 7: Dose-response model

Search strings

("Infectious Dose" OR "infective dose" OR "ID50" OR "TCID50" OR PFU OR "plaque forming unit" OR ("dose response" AND model*) OR "infectious particle"~5) AND (Seroconver* OR seropositive* OR "sero epidemiological" OR infection* OR infected OR "antibody positivity" OR "antibody positive"~3)

Eligibility criteria for study selection

Published studies estimating the SARS-CoV-2 and other coronaviruses infectious dose for airborne transmission

Main outcome measures

- Number of infectious viral particles needed to cause an infection OR Range of ID⁵⁰ for airborne transmission OR PFU range inhalation for TCID50%

Results

Experts independently screened the titles and abstracts and excluded studies that did not match the inclusion criteria. Discrepancies were resolved in discussion with the other experts. The same experts retrieved full text articles and determined whether to include or exclude studies on the basis of predetermined selection criteria. A total of 656 studies were initially screened, of which 585 were considered irrelevant. After exclusions, 71 studies were eligible for full text review and 11 met the inclusion criteria.

Data synthesis

FFU: 1. Focus-forming unit

Poforonco	Study docign	Virus / Linoago	Exposuro	Samala	Call line	Control	Infectious dose		
Reference	Study design	virus / Lineage	Exposure	Sample	Cen inte	Control	ID ₅₀	TCID ₅₀	
Blaurock et al. ³⁴	Animal study	SARS-CoV-2 2019_nCoV Muc-IMB-1	orotracheal	Golden Syrian hamsters	Vero E6 cells and Vero E6 in DMEM with 2% FCS Symptoms, Histopathology			(MID) 10x10 ⁻³ TCID ₅₀	
Killingley et al. ³⁵	Human challenge	SARS-CoV- 2/human/GBR/484861/2020	Intranasal drops	36 naïve volunteers 18-36 y	naïve volunteers 18-36 y cGMP Vero cell Symp		55 FFU	10 TCID ₅₀	
Martins et al. ³⁶	Animal study	NYI67-20 (B.1 lineage)	Intranasal drops	Ferret	Vero E6 (ATCC CRL-1586) and Vero E6/TMPRSS2	Symptoms, Seroconversion, virus shedding	31.6 PFU (aged animals) 100.1 PFU (young animals)		
Totura et al. ³⁷	Animal study	MERS-CoV EMC/2012, #NR- 44260	aerosol	African green monkey	Vero E6 cells and Vero (CCL-81)	Symptoms, Seroconversion, histopathology	103-105 PFU		
Watanaho ot al ³⁸	Modeling,	HCoV-229E	NA	mico	ΝΔ	NA	9 PFU	13 TCID ₅₀	
watanabe et al.	pooled data	SARS-CoV-1	NA	inice	NA NA	NA	280 PFU	400 TCID ₅₀	
Hayden et al. ³⁹	Human challenge	H1N1 influenza A/Texas/91	Intranasal drops	166 adult volunteers	Madin-Darby canine kidney (MDCK) cells	Symptoms, Seroconversion	700 PFU	1.0x10 ³ TCID ₅₀	
Alford et al. 40	Human challenge	H2N2	aerosol	Adult volunteers			0.42 – 2.1 PFU	0.6 – 3 TCID ₅₀	
Treanor et al. 41	Human challenge	H3N2	Intranasal drops	130 Adult volunteers	Rhesus Monkey Kidney (RhMK) cells	Symptoms, Seroconversion	7 000 000 PFU	1.0x10 ⁷ TCID ₅₀	
		WT	aerosol	NA		NA	500 PFU		
Riediker et al. 42	Modeling	Delta	aerosol	NA	NA	NA	300 PFU		
		Omicron	aerosol	NA		NA	100 PFU		
Dahish et al. 43	Animal study	SARS-CoV-2 hCoV-	aerosol	16 young adult cynomolgus	Vero cells (ATCC CCL-81)	Seroconversion	36.4 PFU	52 (23 – 363) TCID ₅₀	
		19/USA/WA-1/2020		macaques	CRL-1586)	Fever	179.2 PFU	256 (102 – 603) TCID ₅₀	
Prentiss et al. 44	Modeling from case studies	NA	NA	NA	NA	NA	250 – 1400 PFU		

Q 8: Mask filtration efficiency

Search strings

((mask* OR facemask* OR facepiece* OR n95 OR masking OR N100 OR FFP* OR FFP2 OR FFP2 OR FFP3 OR FFP3 OR FFP3 OR "face shield"~3 OR "face piece"~3 OR "facial piece"~3 OR "facial piece"~3 OR "facial shield"~3 OR "face covering"~3 OR "facial coveri~3 OR "facial cover"~3 OR "facial coveriew" OR "collaborative coveriw" OR "collab

Eligibility criteria for study selection

Studies that measured the inward and outward filtration efficiency of different type of masks for a given size of particles with information on particles ranges and/or respiratory activity/particle velocity/airflow.

Main outcome measures

1. Inward and outward filtration efficiency per type of mask or respiratory activity or particle range

Results

Experts independently screened the titles and abstracts and excluded studies that did not match the inclusion criteria. Discrepancies were resolved in discussion with the other experts. The same experts retrieved full text articles and determined whether to include or exclude studies on the basis of predetermined selection criteria. A total of 230 studies were initially screened, of which 147 were considered irrelevant. After exclusions, 83 studies were eligible for full text review and 14 met the inclusion criteria.

CM: Cloth mask C: c	otton L: layer	ML: multiple layer	Ν	IR: not reported Y: yes	s N: not PES: polyester PP: polypro	pylene		
Deference	Ctudu dosign	Type of mask	Fit test	Douticles renges	Beenington, estivity (flow rate (valesity		Filtration efficiency	
Reference	Study design	Type of mask	(Y/N/NR)	Particles ranges	Respiratory activity/now rate/velocity	inward	outward	not specified
Asadi et al. 45	Experimental	Surgical	n	0.2 – 20 um	breathing talking and coughing		90%	
Asadi et al.	Experimental	Unvented KN95		0.5 - 20 μΠ			74%	
		CM 100% C 1L				69%		
Sousa et al. ⁴⁶ Lit	Litoraturo roviow	CM 100% C 2L	NR	20 – 1000 nm	Aerosol dispersion speed	70%		
	Literature review	CM Linen 1L		20 – 1000 nm	16.5 cm/s	60%		
		Surgical				96%		
		NOF		>300 nm		99%		
Konda et al 47	Experimental		ND	<300 nm	2.2 CEM or ~ 90 L/min	85%		
Konua et al.	Experimental	Surgical	INIX	>300 nm	3.2 CHW 01 * 30 L/HIII	99%		
		Surgical		<300 nm		76%		
Maher et al. ⁴⁸	Experimental	CM 1,2,3L	NR	1 µm	300 L/min			74.4–95.2%
Viac at al. 49	Experimental	CM 6L	NR	0.75 μm	4440 cm/s			53.2–93.8%
	Experimental			8.2 μm				36.7–90.4%

O'Kelly et al. 50	Experimental	CM ML	NR	0.02–0.1 μm	1650 cm/s		
Park and Jayaraman ⁵¹	Experimental	CM PES/PP	N	0.3 µm	8.7 cm/		
Lindsley et al. 52	Experimental	CM C 3L	N	<0.6 µm	28.3 L/min		
Liu et al. 53	Experimental	CM reusable	N	0.075 μm	85 L/min		
Li et al. 54	Experimental	CM 100% C	N	0.01–1 μm	20.5 L/min		77%
Dovies at al. 55	Eventimental	CM 100% C	N	0.022.um	20 L /min	50.85%	
Davies et al.	Experimental	Surgical	N	0.023 µm	30 L/min	89.52%	
Nounana at al 56	Eventimental	CM	Yes	<10 um	2.7 m/s	63-84%	
Neuparle et al.	Experimental	Surgical	(Sealed)	<10 µm	2.7 11/5	94%	
		N95	N	<1 µm	8 L/min	65 – 97%	
		CM	N	<1 µm	8 L/min	50 - 90%	
Shakua at al 57	Evention	Surgical	N	<1 µm	8 L/min	86 - 93%	
Shakya et al.	Experimental	СМ	N	<1 µm	19 L/min	10-82%	
		Surgical	N	<1 µm	19 L/min	60 - 65%	
		N95	N	<1 µm	19 L/min	75 – 90%	
		CM 4L	N			99.98%	
Ma et al. 58	Experimental	Surgical	N	Median 3.9 µm	2.2 m/s to 9.9 m/s	97.14%	
		N95	N			95.15%	
		Surgical mask	N	Out word over a first out	Outward experiment	80%	50 – 75%
		Thin cotton	N	Outward experiment	5.3 L/m	50%	30 – 50%
Dap at al 59	Evporimontal	Thin acrylic	N	0.04 – 1 µm	3.2 to 3.4 m/s	5 – 40%	75% (2μm)
Pall et al.	Experimental	CDC non-sewn	N	Inward experiment		5 – 40%	
		CDC sewn	N		Inward experiment	5 – 40%	50% (2µm)
		Microfiber	N	0.5 – 2 μπ	15 L/m		<25% (2µm)
	Experimental	N95	Yes				99.95%
Huang et al. ⁶⁰	(<i>in vivo</i> bacterial filtration efficiency)	Surgical mask	Yes	bacteri	al pneumonia patients		99.91%
		Surgical (tie)	Yes	< 1 µm to > 200 µm		2 – 4	
Course at al. 61	Europeiro entel	Surgical (strap)	Yes	Distribution	Mean values of the reduction factor for	2 – 9	
Gawn et al.	Experimental	FFP2	Yes	~50% <20 μm	ambient particles and simulated sneeze	52 – 258	
		FFP3	Yes	10% >100 μm		145 – 766	
Milton at al 62	Evporimental	Surgical	No	> 5 µm	Breathing	2.8 (95%Cl 1.5 – 5.2)	
Willton et al. **	Experimental	Surgical	No	< 5 µm	Fold reduction of exhaled particles	25 (95%Cl 3.5 – 150)	

	10–62%
	9 – 88%
	30%
	20%
77%	
50 – 75%	
30 – 50%	
75% (2μm)	
50% (2μm)	
<25% (2µm)	
99.95%	
99.91%	

Q 9: close encounter interactions

Social contact patterns and implications for infectious disease transmission: A systematic review and meta-analysis of contact surveys⁶³

Methods

Systematic review and individual-participant meta-analysis of surveys carried out in low- and middle-income countries and compare patterns of contact in these settings to surveys previously carried out in high-income countries. Using individual-level data from 28,503 participants and 413,069 contacts across 27 surveys, we explored how contact characteristics (number, location, duration, and whether physical) vary across income settings). A negative binomial regression model was used to explore the association between the total number of daily contacts and the participant's age, sex, employment/student status, and household size, as well as methodology and survey day. Incidence rate ratios from these regressions are referred to as 'contact rate ratios' (CRRs

Results

The median number of contacts made per day across all the studies was 9 (IQR = 5-17), and was similar across income strata (LIC/LMIC = 10[5-17], UMIC = 9[5-17]. Contact rates declined with age in high- and upper-middleincome settings, but not in low-income settings, where adults aged 65+ made similar numbers of contacts as younger individuals and mixed with all age groups. Across all settings, increasing household size was a key determinant of contact frequency and characteristics, with low-income settings characterised by the largest, most intergenerational households. A higher proportion of contacts were made at home in low-income settings, and work/school contacts were more frequent in high-income strata. We also observed contrasting effects of gender across income strata on the frequency, duration, and type of contacts individuals made.

Data

The total number of observations, as well as the mean, median, and interquartile range (p25 and p75) of total daily contacts shown by participant and study characteristics.

Group	Categorization	Observation (N)	Mean	P25	Median	P75
Overall		28,503	14.5	5	9	17
Gender	Male	13,218	15.3	5	9	18
	Female	14,598	13.7	5	9	16
	<15	8,561	14.6	6	10	19
Age	15 – 65	8,330	14.9	5	9	17
	>65	10,267	10.4	3	6	12
	LIC/LMIC	9,906	15.4	5	10	17
Income status	UMIC	8,330	14.4	5	8	16
	HIC	10,267	13.7	5	9	17
Day type	Weekend	4,308	14.7	5	9	16
	Weekday	21,579	14.1	5	9	17
Employment	Yes	8,879	15.4	5	9	17
(in those aged >18)	No	6,158	9.8	4	7	12
Student	Yes	4,438	18.4	8	14	24
(in those aged 5 – 18)	No	600	10.4	5	8	14
	1	1,479	10.4	3	6	12
	2	3,220	11.8	4	7	14
	3	4,130	12.0	4	7	14
	4	5,240	13.4	5	8	17
-	5	3,109	12.5	4	8	14
	6+	8,873	17.7	7	11	20

Data on the duration of contact (<1 or ≥1 hr) were available for 22,822 participants. The percentage of contacts lasting at least 1 hr was 63.2% and was highest for UMICs (76.0%) and lowest for LICs/ LMICs (53.1%). Across both UMICs and HICs, duration of contacts was lower in individuals aged over 15 years compared to those aged 0–15, with the extent of this disparity most stark for HICs (for ages 65+ compared to <15 years: adjCRR [95%Crl]: LIC/LMIC = 0.61[0.57–0.64], UMIC = 0.61[0.58-0.65], HIC = 0.35[0.33-0.37].

- Alsved, M. et al. Exhaled respiratory particles during singing and talking. Aerosol Sci. Technol. 54, 1245–1248 (2020). 1.
- 2. Bagheri, G. et al. Exhaled particles from nanometre to millimetre and their origin in the human respiratory tract. medRxiv 2021.10.01.21264333 (2021) doi:10.1101/2021.10.01.21264333.
- 3. Chao, C. Y. H. et al. Characterization of expiration air jets and droplet size distributions immediately at the mouth opening. J. Aerosol Sci. 40, 122 (2009).
- Ding, S., Teo, Z. W., Wan, M. P. & Ng, B. F. Aerosols from speaking can linger in the air for up to nine hours. Build. Environ. 205, 108239 (2021). 4.
- Good, N. et al. Respiratory Aerosol Emissions from Vocalization: Age and Sex Differences Are Explained by Volume and Exhaled CO2. Environ. Sci. Technol. Lett. 8, 1071–1076 (2021). 5.
- 6 Kappelt, N., Russell, H. S., Kwiatkowski, S., Afshari, A. & Johnson, M. S. Correlation of Respiratory Aerosols and Metabolic Carbon Dioxide. Sustain. 2021, Vol. 13, Page 12203 13, 12203 (2021).
- Mürbe, D., Kriegel, M., Lange, J., Rotheudt, H. & Fleischer, M. Aerosol emission in professional singing of classical music. Sci. Reports 2021 111 11, 1–11 (2021). 7.
- 8 Murbe, D. et al. Aerosol emission of adolescents voices during speaking, singing and shouting. PLoS One 16, e0246819 (2021).
- 9 Mimura, T. et al. Concentration of Droplets from Patients during Normal Breathing and Speech and Their Importance in Protection from Coronavirus SARS-CoV-2 (COVID-19) Infection. Open Ophthalmol. J. 15, 103–107 (2021).
- DUGUID, J. P. The Numbers and the Sites of Origin of the Droplets Expelled during Expiratory Activities. Edinb. Med. J. 52, 385 (1945). 10.
- Papineni, R. S. & Rosenthal, F. S. The Size Distribution of Droplets in the Exhaled Breath of Healthy Human Subjects. http://www.liebertpub.com/jam 10, 105–116 (2009). 11.
- Morawska, L. et al. Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities. J. Aerosol Sci. 40, 256–269 (2009). 12.
- 13. Asadi, S. et al. Aerosol emission and superemission during human speech increase with voice loudness. Sci. Reports 2019 91 9, 1–10 (2019).
- Stadnytskyi, V., Bax, C. E., Bax, A. & Anfinrud, P. Brief Report: The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission. Proc. Natl. Acad. Sci. U. S. A. 117, 11875 (2020). 14.
- Johnson, G. R. et al. Modality of human expired aerosol size distributions. J. Aerosol Sci. 42, 839–851 (2011). 15.
- Gilad, R. et al. Evaluation of the relationship between quantitative PCR results and cell culturing of SARS2-CoV with respect to symptoms onset and Viral load a systematic review. medRxiv 2021.08.23.21262162 (2021) 16. doi:10.1101/2021.08.23.21262162.
- Chen, P. Z. et al. SARS-COV-2 shedding dynamics across the respiratory tract, sex, and disease severity for adult and pediatric COVID-19. Elife 10, (2021). 17.
- 18. Jacot, D., Greub, G., Jaton, K. & Opota, O. Viral load of SARS-CoV-2 across patients and compared to other respiratory viruses. Microbes Infect. 22, 617–621 (2020).
- Chen, P. Z. et al. Heterogeneity in transmissibility and shedding SARS-CoV-2 via droplets and aerosols. Elife 10, (2021). 19.
- van Doremalen, N. et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med. 382, 1564–1567 (2020). 20.
- Robey, A. J. & Fierce, L. Sensitivity of airborne transmission of enveloped viruses to seasonal variation in indoor relative humidity. Int. Commun. Heat Mass Transf. 130, 105747 (2022). 21.
- Schuit, M. et al. Airborne SARS-CoV-2 Is Rapidly Inactivated by Simulated Sunlight. J. Infect. Dis. 222, 564–571 (2020). 22.
- Schuit, M. et al. The Stability of an Isolate of the SARS-CoV-2 B.1.1.7 Lineage in Aerosols Is Similar to 3 Earlier Isolates. J. Infect. Dis. 224, 1641–1648 (2021). 23.
- Oswin, H. P. et al. The Dynamics of SARS-CoV-2 Infectivity with Changes in Aerosol Microenvironment. medRxiv 2022.01.08.22268944 (2022) doi:10.1101/2022.01.08.22268944 24.
- 25. Chatterjee, S., Murallidharan, J. S., Agrawal, A. & Bhardwaj, R. How coronavirus survives for hours in aerosols. Phys. Fluids 33, 081708 (2021).
- Smither, S. J., Eastaugh, L. S., Findlay, J. S. & Lever, M. S. Experimental aerosol survival of SARS-CoV-2 in artificial saliva and tissue culture media at medium and high humidity. Emerg. Microbes Infect. 9, 1415 (2020). 26.
- Dabisch, P. et al. The influence of temperature, humidity, and simulated sunlight on the infectivity of SARS-CoV-2 in aerosols. Aerosol Sci. Technol. 55, 142–153 (2020). 27.
- 28. Puhach, O. et al. Infectious viral load in unvaccinated and vaccinated individuals infected with ancestral, Delta or Omicron SARS-CoV-2. Nat. Med. 2022 1–1 (2022) doi:10.1038/s41591-022-01816-0.
- 29. Heitzman-Breen, N. & Ciupe, S. M. Modeling within-host and aerosol dynamics of SARS-CoV-2: the relationship with infectiousness. bioRxiv 2022.03.08.483569 (2022) doi:10.1101/2022.03.08.483569.
- 30. Hawks, S. A. et al. Infectious SARS-CoV-2 Is Emitted in Aerosol Particles. MBio 12, (2021).
- Lednicky, J. A. et al. Viable SARS-CoV-2 in the air of a hospital room with COVID-19 patients. Int. J. Infect. Dis. 100, 476–482 (2020). 31.
- Campbell, F. et al. Increased transmissibility and global spread of SARSCoV- 2 variants of concern as at June 2021. Eurosurveillance 26, 1–6 (2021). 32.

- Liu, Y. & Rocklöv, J. The effective reproductive number of the Omicron variant of SARS-CoV-2 is several times relative to Delta. J. Travel Med. 29, 1–4 (2022). 33.
- Blaurock, C. et al. Compellingly high SARS-CoV-2 susceptibility of Golden Syrian hamsters suggests multiple zoonotic infections of pet hamsters during the COVID-19 pandemic. bioRxiv 2022.04.19.488826 (2022) 34. doi:10.1101/2022.04.19.488826.
- 35. Killingley, B. et al. Safety, tolerability and viral kinetics during SARS-CoV-2 human challenge in young adults. Nat. Med. 2022 1–11 (2022) doi:10.1038/s41591-022-01780-9.
- 36. Martins, M., Fernandes, M. H. V., Joshi, L. R. & Diel, D. G. Age-Related Susceptibility of Ferrets to SARS-CoV-2 Infection. J. Virol. 96, (2022).
- Totura, A. et al. Small particle aerosol exposure of african green monkeys to MERS-CoV as a model for highly pathogenic coronavirus infection. Emerg. Infect. Dis. 26, 2835–2843 (2020). 37.
- 38. Watanabe, T., Bartrand, T. A., Weir, M. H., Omura, T. & Haas, C. N. Development of a dose-response model for SARS coronavirus. Risk Anal. 30, 1129–1138 (2010).
- 39. Hayden, F. G. et al. Safety and Efficacy of the Neuraminidase Inhibitor GG167 in Experimental Human Influenza. JAMA 275, 295–299 (1996).
- Alford, R. H., Kasel, J. A., Gerone, P. J. & Knight, V. Human Influenza Resulting from Aerosol Inhalation. Proc. Soc. Exp. Biol. Med. 122, 800–804 (1966). 40.
- Treanor, J. J. et al. Evaluation of trivalent, live, cold-adapted (CAIV-T) and inactivated (TIV) influenza vaccines in prevention of virus infection and illness following challenge of adults with wild-type influenza A (H1N1), A (H3N2), 41. and B viruses. Vaccine 18, 899-906 (1999).
- 42. Riediker, M. et al. Higher viral load and infectivity increase risk of aerosol transmission for Delta and Omicron variants of SARS-CoV-2. Swiss Med. Wkly. 152, w30133 (2022).
- Dabisch, P. A. et al. Seroconversion and fever are dose-dependent in a nonhuman primate model of inhalational COVID-19. PLOS Pathog. 17, e1009865 (2021). 43.
- Prentiss, M., Chu, A. & Berggren, K. K. Superspreading Events Without Superspreaders: Using High Attack Rate Events to Estimate N. medRxiv (2020). 44.
- Asadi, S. et al. Efficacy of masks and face coverings in controlling outward aerosol particle emission from expiratory activities. Nat. Sci. Reports 10, 1–13 (2020). 45.
- Sousa, I. T. C. de, Pestana, A. M., Pavanello, L., Franz-Montan, M. & Cogo-Müller, K. Máscaras caseiras na pandemia de COVID-19: recomendações, características físicas, desinfecção e eficácia de uso. Epidemiol. e Serviços Saúde 46. 30, (2021).
- 47. Konda, A. et al. Aerosol Filtration Efficiency of Common Fabrics Used in Respiratory Cloth Masks. ACS Nano 14, 6339–6347 (2020).
- 48. Maher, B., Chavez, R., Tomaz, G. C. Q., Nguyen, T. & Hassan, Y. A fluid mechanics explanation of the effectiveness of common materials for respiratory masks. Int. J. Infect. Dis. 99, 505–513 (2020).
- Xiao, L., Sakagami, H. & Miwa, N. A New Method for Testing Filtration Efficiency of Mask Materials Under Sneeze-like Pressure. In Vivo 34, 1637–1644 (2020). 49.
- O'Kelly, E., Pirog, S., Ward, J. & Clarkson, P. J. Ability of fabric face mask materials to filter ultrafine particles at coughing velocity. BMJ Open 10, e039424 (2020). 50.
- 51. Park, S. & Jayaraman, S. From containment to harm reduction from SARS-CoV-2: a fabric mask for enhanced effectiveness, comfort, and compliance. https://doi.org/10.1080/00405000.2020.1805971 112, 1144–1158 (2020).
- Lindsley, W. G., Blachere, F. M., Law, B. F., Beezhold, D. H. & Noti, J. D. Efficacy of face masks, neck gaiters and face shields for reducing the expulsion of simulated cough-generated aerosols. medRxiv 2020.10.05.20207241 (2020) 52. doi:10.1101/2020.10.05.20207241.
- 53. Liu, Z. et al. Understanding the factors involved in determining the bioburdens of surgical masks. Ann. Transl. Med. 7, 754–754 (2019).
- 54. Li, L., Niu, M. & Zhu, Y. Assessing the effectiveness of using various face coverings to mitigate the transport of airborne particles produced by coughing indoors. Aerosol Sci. Technol. 55, 332–339 (2020).
- Davies, A. et al. Testing the Efficacy of Homemade Masks: Would They Protect in an Influenza Pandemic? Disaster Med. Public Health Prep. 7, 413 (2013). 55.
- Neupane, B. B., Mainali, S., Sharma, A. & Giri, B. Optical microscopic study of surface morphology and filtering efficiency of face masks. PeerJ 2019, e7142 (2019). 56.
- Shakya, K. M., Noyes, A., Kallin, R. & Peltier, R. E. Evaluating the efficacy of cloth facemasks in reducing particulate matter exposure. J. Expo. Sci. Environ. Epidemiol. 2017 273 27, 352–357 (2016). 57.
- Ma, Q. X. et al. Potential utilities of mask-wearing and instant hand hygiene for fighting SARS-CoV-2. J. Med. Virol. 92, 1567–1571 (2020). 58.
- Pan, J., Harb, C., Leng, W. & Marr, L. C. Inward and outward effectiveness of cloth masks, a surgical mask, and a face shield. https://doi.org/10.1080/02786826.2021.1890687 55, 718-733 (2021). 59.
- 60. Huang, J. T. & Huang, V. J. Evaluation of the efficiency of medical masks and the creation of new medical masks. J. Int. Med. Res. 35, 213–223 (2007).
- Gawn, J., Clayton, M., Makison, C., Crook, B. & Hill, H. Evaluating the protection afforded by surgical masks against influenza bioaerosols. Heal. Saf. Exec. (2008). 61.
- Milton, D. K., Fabian, M. P., Cowling, B. J., Grantham, M. L. & McDevitt, J. J. Influenza Virus Aerosols in Human Exhaled Breath: Particle Size, Culturability, and Effect of Surgical Masks. PLoS Pathog. 9, (2013). 62.

63. Mousa, A. et al. Social contact patterns and implications for infectious disease transmission: A systematic review and meta-analysis of contact surveys. Elife **10**, (2021).